11/18, Wed

IMG_8123.jpg

슬라임 한 마리 정도 나와줄 것 같은 아침 조깅길

11/14, Sat

바이엘 하에서 때려친 사람이지만,

체르니를 치는 마음으로

요즘 알고리즘 스터디를 하고 있다.

모처럼 보고 중에 갑자기 그룹장님이 "그래서 스택으로 처리하겠다는거지?"

"아 네에?" 씨익 웃지요.

덧. 회계사 합격수기들을 모처럼 읽게 되었는데(남의 군생활/육아/공부는 늘 참 수월해 보이는데...), 다른건 잘 모르겠고 포커스 타이머 앱을 3900원 주고 샀다. 3900원 어치 공부는 해야할텐데... 늘 학난성일세.

체르니에 대해서 : "체르니100이나 체르니30만을 주구장창 주교재로 연습하면 정말정말 매우! 재미없어요 ㅠㅠㅠㅠㅠ 분명한 목적을 가지고 연습해야만 효과가 있는 교본이에요!"(어느 블로그에서...) - 실은 지금도 공부하다가 하기 싫어서 쓰기 시작했는데 이렇게 길어짐.

GPT3가 배우는 것

GPT3가 배우는 것은 주어진 모든 문맥상황에서의 말들끼리의 관계이다. GPT3 모델의 트랜스포머를 살펴보면 쿼리, 키, 밸류에 대한 Embedding이 핵심인데, 모든 문맥(morphme들이 서로가 서로를 만나지는 상황)마다 밸류가 바뀌도록 배우는 것이 핵심이다. 결국 "관계"를 배우는 것이다. 그 관계를 배우려다보니, 많은 문장으로 일일이 다 배우자니 컴퓨팅 퍼포먼스가 엄청나게 필요하게 된 것이다.

NLP가 한편으로 시들해지는 것이 GPT3 시대부터 가내수공업 단계가 슬슬 마무리되고 있기 때문이다. 현재 그러한 컴퓨팅을 갖출 수 있는 것은 언론에 따르면 한국에서도 삼성이나 네이버정도로 보인다.

다음 단어를 알아채도록 배우는 것이 아니라, 다음 단어를 알아맞추는 퀴즈를 풀면서 사실은 말들의 관계를 배우고 있다는 것. 평이한 태스크를 수행하면서 그 안에 내재된 요소들의 관계를 학습하는 것. 그렇다면 이러한 원리는 비단 자연어에만 적용되는 것일까?

트랜스포머 아키텍처가 모든 문맥 별 상황에 대한 각각 의미를 파악하려는 방식이 어쩌면 브루트 포스한 것이므로 그에 대한 튜닝을 노려볼 수는 있겠지만, 결국 요소들의 관계를 모든 Context에서 배우자는 트랜스포머의 대원리(?)는 당분간 지배적이고, 여러 분야로 퍼질 것으로 생각된다.

위 이야기들은 맞는가? 자신 없다. GPT3에 대해 뭔가 적어두고 싶어서 적어봤는데 틀렸거나 고칠 부분이 많이 있겠지. 결국 지금 해봐야할 것은 트랜스포머를 작게나마 NLP가 아닌 다른 필드에서 태워보기? 아니면 OpenAI API 사용법이나 잘 배우거나.

(나중에 더 해 볼 이야기 ...) 실제는 자신의 인더스트리에서 NLP 처리가 어떻게 얼만큼 필요한지 파악하는 것부터이다. 챗봇 사주세요 가 아니고. 트랜스포머는 이미 자연어를 넘어 이미지, 영상에서 활약 중인 것으로 알고 있다.

11/13, Fri

기술은 점점 쉬워지고 커뮤니케이션은 점점 어려워지는 시대를 살고 있다고

회사를 떠나는 사람에게 이야기해주었다. 아마 그 친구는 무슨 말인지 못 알아 들었을 것이다, 한국말에 약해서.

걷고 있는 길이 좋은 길인지 어떻게 알 수 있을까? 우리 엔트로피는 계속 작아져가는데...

10/31, Sat

4AAC3DC7-D450-4D96-8C46-9EE6ABF54AE0.jpeg

Our first Halloween.

in omnibus requiem quaesivi, et nusquam inveni nisi in angulocum libro.
about KJLab, 고주현연구소는?


더 많은 이야기들 ...

케이제이 : 이재서 // 축하합니다 루비로싸 // 최근에는 플레이빈도가 줄었는데 저희
루비로싸 : 아들이 브롤스타즈 카드 게임 방법을 물어보아, 검색하다 왔습니다. 창의적
이재서 : 브롤스타즈 100장이상 임. 축하축하!

Email Subscription